

A NEW SERIES OF C₃-AZA CARBOCYCLIC INFLUENZA NEURAMINIDASE INHIBITORS: SYNTHESIS AND INHIBITORY ACTIVITY¹

Willard Lew, a* Huiwei Wu, a Dirk B. Mendel, a Paul A. Escarpe, a Xiaowu Chen, W. Graeme Laver, b Bradford J. Graves, and Choung U. Kima*

^aGilead Sciences Inc., Foster City, CA 94404 U.S.A.; ^bAustralian National University, Canberra, Australia; and ^cRoche Discovery Welwyn, Welwyn Garden City, Hertfordshire, U.K.

Received 30 July 1998; accepted 9 October 1998

Abstract: The synthesis and influenza neuraminidase inhibitory activity of a new series of C_3 -aza carbocyclic neuraminidase inhibitors are described. Analogues 3c and 3j, bearing a 3-pentyl group, exhibit influenza A inhibitory activities comparable to that of 1. © 1998 Elsevier Science Ltd. All rights reserved.

Recently, we have described a new class of carbocyclic influenza neuraminidase (NA) inhibitors as transition state analogues for the NA catalyzed cleavage of terminal sialic acid residues.² A key feature in this series is the incorporation of lipophilic side chains at the C₃-position of the cyclohexene ring system that bind in a conformationally induced hydrophobic pocket in the NA active site. Extensive structure–activity relationship studies^{2,3} have identified compound 1 (GS 4071) to be one of the most potent influenza NA inhibitors in this series. Currently, the ethyl ester prodrug 2 (GS 4104, also known as Ro 64-0796) is being evaluated for the oral treatment and prophylaxis of influenza infection in phase II/III clinical studies.

Early structure–activity relationship studies have demonstrated that the corresponding C_3 -thia and C_3 -carba isosteres in this series exhibit comparable influenza neuraminidase inhibitory activity relative to the C_3 -oxa analogue. As part of our continuing efforts in this area we were interested in the corresponding C_3 -aza isostere 3. To this end, a series of C_3 -aza analogues were prepared and evaluated for influenza neuraminidase inhibitory activity.

1 R = H GS 4071 2 R = Et GS 4104 (Ro-64-0796)

3 R_1 and $R_2 = H$, alkyl, acyl

The corresponding C_3 -aza analogues were prepared according to Scheme 1. Amino alcohol **5**, prepared from (-)-quinic acid (**4**),² was acetylated with acetic anhydride to furnish allylic acetate **6** in 81% yield. Treatment of **6** with excess dialkyl amine (R_1R_2NH ; see Table 1) and 5 mol% tetrakis(triphenylphosphine)palladium(0)⁴ provided the coupled products in yields ranging from 38–60%. Reduction of the azide group with triphenylphosphine followed by saponification with aqueous KOH furnished the desired amino acids **3a-h** in yields of 80–90%.

Scheme 1^a

HO,
$$OH$$
 ref 1

HO, OH Rough ref 1

HO,

^aReagents: (a) Ac₂O, pyridine. (b) R₁R₂NH (2.5 eq), 5 mol% Pd(PPh₃)₄, THF. (c) PPh₃, H₂O, THF.(d) aq. KOH, THF. (e) (Boc)₂O, CH₃CN. (f) NaN₃, 5 mol% Pd(PPh₃)₄, H₂O,THF. (g)R₂CHO,ZnCl₂/NaCNBH₃. (h) R₂COCl, pyridine. (i) CF₃CO₂H, CH₂Cl₂.

The palladium coupling of 6 with less reactive primary amines was not successful due to aromatization of the allyl-palladium intermediate. Therefore, an alternate route was required for the preparation of the corresponding mono N-alkyl and amide derivatives. Compound 6 was converted to the mono N-Boc protected amine 7 by a four-step sequence: (1) reduction of the azide group with triphenylphosphine (90%), (2) protection of the amine with di-*t*-butyl dicarbonate (95%), (3) palladium(0) catalyzed azidation with sodium azide (75%), and (4) reduction of the azide group with triphenylphosphine (89%). The amine 7 was then converted into either the mono N-alkyl derivative via reductive alkylation with the corresponding aldehyde (R₂CHO) and ZnCl₂/NaCNBH₃ (69–80%) or the amide by acylation with the corresponding acid chloride (R₂COCl) in pyridine (89–97%). Removal of the N-Boc protecting group with trifluoroacetic acid (50–90%) followed by ester hydrolysis with aqueous KOH provided amino acids 3i-m in 77–95% yield.

The neuraminidase inhibitory activities of **3a-m** were evaluated in an enzymatic assay⁶ with the results summarized in Table 1. Compounds **3c** and **3j**, which are direct side chain analogues of **1**, exhibit influenza A neuraminidase inhibitory activities comparable to **1**. In fact, the X-ray crystal structure of **3c** bound with influenza neuraminidase confirm that the 3-pentyl group of **3c** binds in the hydrophobic pocket formed by the hydrocarbon side chains of Glu 276, Ala 246, Arg 224 and Ile 222 in a manner similar to that of **1** (Figure 1).²

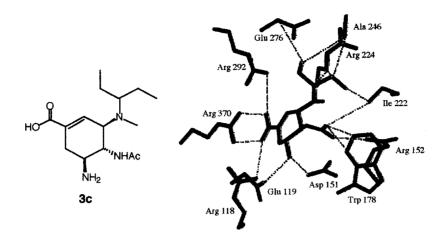


Figure 1. X-ray structure of 3c bound with influenza neuraminidase

Table 1. Influenza Neuraminidase Inhibition

			enzyme IC ₅₀ (nM)	
compounda	R ₁	R ₂	Flu A ^b	Flu B ^c
3a	CH ₃	CH₂CH₂CH₃	65	65
3 b	CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	180	ND^d
3 c	CH ₃	$CH(CH_2CH_3)_2$	6	60
3d	CH ₃	CH ₂ CH ₂ Ph	100	5 65
3e	CH ₃	c-C ₆ H ₁₁	200	>1000
3 f	CH ₂ CH ₃	$CH_2CH_2CH_3$	90	ND^d
3 g	CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	85	175
3h	CH ₂ CH ₂ CH ₃	$CH_2CH_2CH_3$	12	60
3i	Н	CH ₂ CH ₂ CH ₃	200	240
3j	Н	$CH(CH_2CH_3)_2$	11	100
3k	Н	COCH ₂ CH ₃	2700	500
31	Н	$COCH(CH_3)_2$	6400	1700
3 m	Н	COCH(CH ₂ CH ₃) ₂	4000	3200
11		GS 4071	1	4

^aAll compounds gave satisfactory spectral and analytical data; ^bA/PR/8/34 (H1N1); ^cB/Lee/40; ^dnot determined.

Compound 3h also exhibits comparable influenza A inhibition to that of 3c and 3j, which may be due to the two propyl groups binding in a conformation in the NA active site approximating that of the 3-pentyl group. The amide analogues 3k-m exhibit a substantial decrease in potency compared to the corresponding mono and dialkyl analogues which may be a result of inductive and conformational effects of the amide group. Presently, the effects of the C_3 nitrogen atom on binding affinity and the differences in potencies observed against influenza B neuraminidase have not been established. Further investigation into the structure–activity relationship as well as X-ray crystallographic analysis and optimization of this series of compounds is in progress and will be reported in due course.

References and Notes

- Presented in part in: Lew, W.; Wu, H.; Mendel, D.B.; Escarpe, P.A.; Laver, W.G.; Graves, B.J.; Kim, C.U. "Synthesis and Activity of a New Series of C₃-Aza Carbocyclic Influenza Neuraminidase Inhibitors" 11th International Conference on Antiviral Research, San Diego, CA, USA, April 5-10, 1998.
- 2. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681.
- (a) Williams, M.A.; Lew, W.; Mendel, D.B.; Tai, C.Y.; Escarpe, P.A.; Laver, W.G.; Stevens, R.C; Kim, C.U. *Bioorg. Med. Chem. Lett.* 1997, 7, 1837 (b) Lew, W.; Williams, M.A.; Mendel, D.B.; Escarpe, P.A.; Kim, C.U. *Bioorg. Med. Chem. Lett.* 1997, 7, 1843 (c) Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H.; Zhang, L.; Chen, X.; Escarpe, P.A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. *J. Med. Chem.* 1998, 41, 2451.
- 4. Murahashi, S.I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292.
- Reaction of 6 with 3-aminopentane as well as with other primary amines in the Pd(0) catalyzed amination reaction leads exclusively to formation of ethyl N-acetyl-4-aminobenzoate resulting from elimination of the C₅ azido group of 6.
- 6. A full protocol for the enzymatic assay is found in: Li, W.; Escarpe, P.A.; Eisenberg, E.J.; Cundy, K.C.; Sweet, C.; Jakeman, K.J.; Merson, J.; Lew, W.; Williams, M.A.; Zhang, L.; Kim, C.U.; Bischofberger, N.; Chen, M.S.; Mendel, D.B. *Antimicrob. Agents Chemother.* 1998, 42, 647.